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Master-equation for cascade damage modeling
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Abstract

This paper is a continuation of our effort to understand and model irradiation effects under cascade damage. The

conventional master equation for the evolution of a void ensemble is reformulated to include the stochastic effects

due to the random cascade initiation. Numerical solution of the modified master equations to model the evolution

of an ensemble of voids explicitly shows that stochastic fluctuations due to random cascade initiation produce impor-

tant effects that cannot be accounted for by the conventional mean-field rate theory approach. The results are in good

agreement with those derived previously using the Fokker–Planck equation.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the stochastic nature of point-defect fluxes,

the growth of a void proceeds like a random-walk pro-

cess in the one-dimensional space of void sizes. Indeed,

Mansur et al. [1] were among the first authors to show

that the concentrations of point-defects generated dur-

ing cascade irradiation undergo large fluctuations that

affect the rates of point-defect absorption by sinks.

Under such circumstances, the growth of an individual

void is not monotonic, but fluctuates, even in the ab-

sence of vacancy emission.

Since very small vacancy clusters are mobile [2,3], a

small region near the origin of the space of void sizes
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can be considered as a �sink�, where a shrinking void dis-

appears, i.e., ceases to exist as a separate entity of the

void ensemble. It is clear from this picture that a �ran-
dom-walking� void always has a finite probability to dis-

appear into the sink, i.e., shrink away, even if the

ensemble-averaged size is dictated to increase with time,

due to the operation mechanisms such as dislocation or

production bias [4]. This is allowed by a compensating

portion that grows faster than the ensemble average. It

is hardly surprising then, when stochastic effects are

taken into account, the description of the evolution of

the void ensemble, such as its number density, may be

substantially different from that based on the standard

rate theory, in which all voids are intrinsically assumed

to be the same, i.e., all grow as the ensemble average.

In their investigation of void nucleation at ele-

vated temperatures under cascade-damage irradiation,

Semenov and Woo [4] found that the probability of

shrinkage of the small void embryo is strongly dependent

on the ratio between the void drift velocity and the void
ed.
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diffusion coefficient in the size space. The latter has its ori-

gin from fluctuations due to the stochastic nature of the

point-defect migratory jumps, as well as that of the cas-

cade initiations. The effects of the two different types of

fluctuations are additive. However, the contribution from

the cascade-induced fluctuations becomes dominant as

the total sink strength and the sink absorption radius in-

creases [5]. Thus, the fluctuationsmay not only play a role

in void nucleation, where they are conventionally taken

into account, at least partially, but also in the evolution

of small voids of experimentally observable sizes.

The production bias [6], a simplified model proposed

to treat complexities introduced by the intra-cascade for-

mation of point-defect clusters, is closely related to the

evolution of small clusters and their effects on the micro-

structure development. As a necessary sequel to the pro-

duction bias model, the effects of cascade-induced

fluctuation on irradiation-damage modeling has been

considered in detail via a formulation using the

Fokker–Planck equation (see [7] for a review). Though

rigorous, the analytic approach is usually not easily

applicable to the general problem of damage accumula-

tion under cascade irradiation. To take into account

the effects of stochastic fluctuations in processes such as

nucleation and growth of defects, a set of kinetic equa-

tions, commonly known as master equations, has also

been used [8–14]. This route sometimes offers a more con-

venient alternative than the Fokker–Planck equation ap-

proach. The numerical solution of the set of master

equations, often numbered in the millions or even bil-

lions, is achievable using a grouping method first pro-

posed by Kiritani [9] and subsequently improved

[13,14]. Despite all indications of its importance, a ver-

sion of the master equations, in which the effects of the

cascade-induced fluctuations are taken into account, is

not available.

In the present paper the conventional master equa-

tions are reformulated to include the stochastic effects

due to random cascade initiation. Applying the modified

master equations, the random cascade initiations are

explicitly shown to have a large effect on the evolution

of a void ensemble. We consider the reduction in void-

number density with increasing dose in molybdenum

at temperatures below 1000 K under neutron irradiation

[15–17]. In this case, vacancy emission from voids is

insignificant and is unlikely to cause the shrinkage of

the voids. The results will be compared with those de-

rived from the Fokker–Planck equations.

2. Reformulation of the mater equations

The general kinetic equation for the microstructure

evolution under cascade-damage irradiation, with full

statistics, has been derived in [18]. In the absence of

the cascade induced fluctuations, this equation can be

reduced to the conventional master equation [18]:
of ðx; tÞ
ot

¼ Jðx� 1; tÞ � Jðx; tÞ; ð1Þ

where xmeasures the void size in terms of the number of

vacancies in the void, f(x, t) is the void distribution func-

tion in the size space, and J(x, t) is the flux of voids in the

size space, which is given by

Jðx; tÞ ¼ Pðx; tÞf ðx; tÞ � Qðxþ 1; tÞf ðxþ 1; tÞ: ð2Þ

The kinetic coefficientsP(x, t) andQ(x, t) are, respectively,

the rates of increase and decrease of the number density of

voids of size x. When vacancy emission from voids is neg-

ligible, they are just the rates of vacancy and interstitial

absorption and have the following conventional form:

P ðx; tÞ ¼ 3x1=3

a2
DvCvðtÞ; ð3Þ

Qðx; tÞ ¼ 3x1=3

a2
DiCiðtÞ; ð4Þ

where Dj and Cj (j = i,v) are the diffusion coefficient and

the atomic concentration of point-defects, respectively,

a = (3X/4p)1/3 and X is the atomic volume.

On the other hand, in the simplest approximation,

which still keeps the effect of the cascade-induced fluctu-

ations, the general kinetic equation also takes the form

of the Fokker–Planck equation [5,18]:

of ðx; tÞ
dt

¼ � o

ox

�
P ðx; tÞ � Qðx; tÞ

� o

ox
P ðx; tÞ þ Qðx; tÞ

2

�
þDcðx; tÞ

��
f ðx; tÞ;

ð5Þ

with

Dcðx; tÞ ¼ 3x2=3GhN 2
di

4aNdkvðtÞ
1þ kvðtÞ

kiðtÞ

� �
: ð6Þ

Here G is the effective generation rate of point-defects,

Nd and hN 2
di are the average number and the average

square number of point-defects generated in a single cas-

cade, respectively, and k2j is the total sink strength for

point-defects of the type j.

The diffusivity Dc governs the �diffusive spread� of the
void distribution function in the size space due to the

random cascade initiation. Since the term Ds(x, t) =

(P(x, t) + Q(x, t))/2 represents the diffusivity due to the

random migratory jumps of point-defects, in Eq. (5) it

can be seen that the effects of both types of fluctuations

on the void evolution are additive.

The Taylor�s expansion of Eq. (1) up to the second

term also gives Eq. (5), but without the corresponding

contribution of cascade-induced fluctuations. Thus, to

the same order of approximation as the Fokker–Planck

equation (5), the kinetic equation for the void distribu-

tion function can be rewritten in the form of the conven-

tional master equation (1), with the kinetic coefficients

P(x, t), Q(x, t) replaced by
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P cðx; tÞ ¼ P ðx; tÞ þ Dcðx; tÞ; ð7Þ

Qcðx; tÞ ¼ Qðx; tÞ þ Dcðx; tÞ: ð8Þ

The evolution of the void number density N(t) and the

swelling S(t) is then governed by the following

equations:

dNðtÞ
dt

¼
X1
x¼x0

of ðx; tÞ
ot

� �
¼ J cðx0 � 1; tÞ; ð9Þ

dSðtÞ
dt

¼
X1
x¼x0

x
of ðx; tÞ

ot

� �

¼ x0J cðx0 � 1; tÞ þ
X1
x¼x0

J cðx; tÞ; ð10Þ

where x0 is the minimum size of the vacancy cluster, be-

low which a void changes into a mobile vacancy cluster

and ceases to be a void embryo. The flux Jc(x, t) can be

written as

J cðx; tÞ ¼ P cðx; tÞf ðx; tÞ �Qcðxþ 1; tÞf ðxþ 1; tÞ; xP x0:

ð11Þ

The flux J c(x0 � 1, t) is the net rate of production of the

smallest embryos. It is determined by the difference be-

tween the rate of their formation from mobile vacancy

clusters, _nvðx0Þ, and that of shrinkage of the existing em-

bryos below the minimum size x0 i.e.,

J cðx0 � 1; tÞ ¼ _nvðx0Þ � Qcðx0; tÞf ðx0; tÞ: ð12Þ

Note that, since there are no voids in the size range

x = x0 � 1, f(x0 � 1, t) = 0. The flux of void embryos

shrinking below the minimum size can be calculated

from the Fokker–Planck equation (5), and is given by

the derivative o/ox[D(x, t)f(x, t)] at x = (x0 � 1). Here

D(x, t) = Ds(x, t) + Dc(x, t) is the total diffusivity in the

size space. Written in terms of finite difference for the

discrete value of the variable Dx = 1, this flux is approx-

imated by D(x0, t)f(x0, t). The difference between Qc(x0, t)

and D(x0, t) arises when the Poisson distribution is

approximated by the Gaussian one, during the deriva-

tion of the Fokker–Planck equation (5) [18]. When

(DvCv � DiCi)� DiCi, which is the case we actually

consider in the present paper, Qc(x0, t) ffi D(x0, t). Within

the validity of this approximation, both appro-

aches based on the modified master equation or the

Fokker–Planck equation, would give the same

results.

From Eqs. (7), (8) and (10)–(12), the rate of accumu-

lation of vacancies in voids can also be written as

dSðtÞ
dt

¼ ½x0 _nvðx0Þ � ðx0 � 1ÞQcðx0; tÞf ðx0; tÞ�

þ
X1
x¼x0

ðP ðx; tÞ � Qðx; tÞÞf ðx; tÞ: ð13Þ
In Eq. (13), the terms in square brackets describe the dif-

ference between the number of vacancies that have been

immobilized to form void embryos, and that which

becomes mobile due to the void shrinkage. Since

V(x, t) = (P(x, t) � Q(x, t)) represents the conventional

average void growth rate, the second term is just the

average net vacancy flux received by the void ensemble.

This means that the foregoing modification does not af-

fect the form of balance equations for the concentrations

of vacancies Cv and interstitials Ci. Thus,

dCv

dt
¼ ðG� x0 _nvðx0Þ þ ðx0 � 1ÞQcðx0; tÞf ðx0; tÞÞ

� DvCv Zvqd þ
3

a2
X1
x¼x0

x1=3f ðx; tÞ
" #

; ð14Þ

dCi

dt
¼ G� DiCi Z iqd þ

3

a2
X1
x¼x0

x1=3f ðx; tÞ
" #

; ð15Þ

where qd is the dislocation density, and Zj is the reaction

constant between dislocations and point-defects.
3. Low temperature evolution of voids in Mo

The reduction of void number density with increasing

dose is often observed in neutron or ion irradiated

molybdenum at low temperatures [15–17]. The disap-

pearance of the voids was originally attributed to the

segregation to the void surfaces of the transmutation

impurities (technetium) [15]. Evidently, this explanation

cannot be applied to the case of ion irradiation [16,17].

Using an analytical approach based on the Fokker–

Planck equation, it is found that cascade-induced fluctu-

ations may lead to a large increase in void shrinkage.

Indeed, changes in void densities of several hundred

per cent in not uncommon [4,19]. Thus, under the

proper experimental conditions, voids with a diameter

of 5 nm may shrink away with a probability of more

than 50%, while for voids with diameters ffi3 nm, the cal-

culated shrinkage probability may reach 80% [4]. This is

consistent with the observation that the overall density

drop during the medium-dose irradiation was due to

the reduction in the number of voids having diameters

63 nm [15]. Using the modified master equation derived

in the foregoing section, we calculate in the following the

evolution of the size distribution function (SDF) of

voids, and study void shrinkage and its dependence on

the cascade morphology and other microstructure

features.

To avoid ambiguity, we consider the low-temperature

regime, in which vacancy emission from voids can be ne-

glected, and which can be estimated from the conven-

tional mean-field equation. Thus, the growth rate of

the average void radius R is given by
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dR
dt

¼ Zvqd

Rðqs þ ZvqdÞ
ðZ i=Zv � 1ÞG
ðqs þ Z iqdÞ

� DvðCe
sðRÞ � C1Þ

� �
;

ð16Þ

where qs = 4pNR is the void sink strength and C1 is the

equilibrium vacancy concentration. Using Eq. (16), the

range of temperatures T, for which vacancy emission is

negligible, can be estimated. Thus, the mean equilibrium

concentration Ce
sðRÞ of vacancies in the neighborhood of

a void of radius R can be written as

Ce
sðRÞ ¼ C1 exp

2csX
kBTR

� �
; ð17Þ

where cs is the surface tension and kB is the Boltzmann

constant. The temperature dependence of the critical

emission rate Kcr, which is equal to the damage rate, is

given by

Kcr ¼
Dvðqs þ Z iqdÞ
ðZ i=Zv � 1Þe ðCe

sðRÞ � C1Þ; ð18Þ

where e = G/K is the fraction of point-defects surviving

the intra-cascade recombination, with K being the nom-

inal NRT dpa rate [20]. The material parameters of Mo

used in the present calculation are listed in Table 1. In

Fig. 1, Kcr is plotted as a function of temperature for dif-

ferent values of void concentration and radius, assuming

a value of 1.05 for Zi/Zv. Thus, for a typical neutron

dose rate of 10�6 NRT dpa/s and a temperature

T < 1000 K, the void radius, above which vacancy emis-

sion can be neglected, is less than 0.21 nm, correspond-

ing to a critical void size of x = 4. For a typical ion

dose rate of 10�3 NRT dpa/s, the corresponding temper-

ature range is T < 1200 K.

In applying the master equations, it should be noted

that small vacancy clusters are usually mobile. In such

cases, equations for the mobile vacancy clusters have

to be added, and the master equation (1) must be mod-

ified to include interactions between the mobile and

immobile clusters. In the present application, we neglect

the mobility of all vacancy clusters, and only consider

the x0 = 2 case. The flux J(x, t) on the right hand side

of Eq. (1) is replaced by the flux Jc(x, t) (see Eq. (11)).

As void nucleation is beyond our present scope, the
Table 1

Material parameters for molybdenum

Parameter Value

Atomic volume, X 1.017 · 10�29 m3

Vacancy migration energy 1.5 eV

Vacancy formation energy 3.0 eV

Vacancy diffusivity pre-exponential 3.0 · 10�6 m2/s

Interstitial migration energy 0.085 eV

Interstitial diffusivity pre-exponential 1.6 · 10�5 m2/s

Surface free energy, cs 2.05 J/m2

Melting temperature, Tm 2898 K
kinetics of small vacancy clusters is not considered in de-

tail. Instead, we focus on the difference between the evo-

lution of a void ensemble, with and without the

stochastic effects of random cascade initiation taken into

account. For this purpose, we take _nvðx0Þ to be zero for

simplicity and solve the modified master equation Eq.

(1) together with the conservation Eqs. (14) and (15),

using the computer code developed previously [14].

Snapshots of the calculated void size distribution

functions are presented in Fig. 2(a) and (b), for different

values of Nd, which measures the average number of free

defects generated per cascades, and total dislocation

density qd. The calculated average void size (R(0) ffi
2 nm) and void number density (N(0) P 1023 m�3) of

the initial void distribution are typical for experimental

void ensembles in molybdenum after a few NRT dpa,

within the temperature range under consideration

[16,21,22]. The voids can also be considered as the major

point-defect sinks in our calculation, because the sink

density ratio qd/qs at the corresponding temperatures is

on the order of 1% experimentally [16,21,22]. In this re-

gard, similar to other pure metals, typical steady-state

dislocation density in molybdenum is just above

1013 m�2 [7,16,21,22].

Fig. 2, together with Fig. 3 for the total void number

density, clearly shows substantial increase of the coars-

ening effect on the void ensemble when stochastic fluctu-

ations due to the random cascade initiation are taken

into account. Indeed, even for a relatively high disloca-

tion density of 1014 m�2, up to half of the initial voids

may dissolve (see Fig. 3(a)), due to the cascade-induced

fluctuations. On the other hand, the size of the surviving
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Fig. 2. Snapshots of the void size distribution at different values

of the total dislocation density qd and the average number of

point-defects generated in a single cascade.
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voids, as well as the average void radius, increase with

dose (Figs. 2 and 4). When the voids are the major sinks

for mobile defects, lower dislocation density also causes

a decrease of the average void growth rate (Eq. 16 and

Fig. 4). As a result, the number of surviving voids de-

creases even more dramatically when the total disloca-

tion density drops from 1014 to 1013 m�2 (Fig. 3(b)). In

agreement with the analytical calculations [4] and exper-

imental results [15], about 80% of voids may have disap-

peared when the void swelling rate is about 2 ·
10�4 (NRT dpa)�1 (see also Fig. 5).
From Eqs. (8) and (12) the flux of shrinking voids in

the size space is given by (Q(x0, t) + Dc(x0, t))f(x0, t). The

ratio of the first two terms can be approximately written

as

Dcðx0; tÞ
Qðx0; tÞ

ffi ax1=30 kvNd

2
: ð19Þ

According to Eq. (19), for Nd = 100, k2v ¼ 1015 m�2 (see

Fig. 6) the ratio Dc(x0, t)/Q(x0, t) ffi 0.27 (x0 = 2), i.e.,

Dc(x0, t) < Q(x0, t). At first sight, the effect of cascade

fluctuations does not appear to be significant. However,

comparing with the case for Nd = 0, i.e., no intra-cas-

cade clustering, the void number density see a reduction

of up to several hundred percent, when cascade-induced
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number of point-defects generated in a single cascade.
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fluctuations is taken into account (Fig. 3). Indeed, it fol-

lows from Eq. (19) that the ratio Dc(x, t)/Q(x, t) increases

with the void size. This size dependence of Dc(x, t)/

Q(x, t) results in an additional gradient driving the

shrinkage of voids, which is much larger than that in-

duced by a constant increase of Q(x, t).
In the presence of a net vacancy flux without vacancy

emission, void shrinkage can only occur through the dif-

fusion of voids in the size space. Thus, the time t re-

quired for a void of the size x to shrink away can be

estimated from the following diffusion relation:

x2 � x20 � 2DðxÞt: ð20Þ

From Eq. (6), the required irradiation dose can be

approximated by

Gt � xRkv
3Nd

; ð21Þ
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where R = ax1/3 and x � x0. For R = 2 nm (x1/3 =

14.88), Nd = 50, k2v ¼ 3� 1015 m�2 (Fig. 6), Eq. (21)

gives a dose of Gt � 2.4 dpa. Taking into account the

intra-cascade recombination, we have Kt � 8 NRT dpa

(G/K = 0.3). Evolution of the void number density pre-

sented in Fig. 3 also supports this estimation.

Note also that in the present calculation, void shrink-

age occurs when the time-averaged void swelling

rate is approximately 2.6 · 10�4 (NRT dpa)�1 at qd =
1013 m�2, and 1.1 · 10�3 (NRT dpa)�1 at qd = 1014 m�2,

respectively (see Fig. 5). These values are in the typical

range of void swelling experimentally observed in

molybdenum at the corresponding temperatures [16,21,

22]. The higher void swelling for the Nd 5 0 cases can

also be readily understood from the foregoing discus-

sions. Indeed, when the voids are the major sinks for

the mobile defects (qs � qd), the conventional expres-

sion

dS
dt

¼ ðZ i � ZvÞGqdqs

ðqs þ Z iqdÞðqs þ ZvqdÞ
; ð22Þ

gives a swelling rate that increases when the void sink

strength is reduced by the cascade-induced stochastic

fluctuations. In contrast, when qs � qd, a similar reduc-

tion of the void density will reduce void swelling instead.

When qs � qd, the average void growth rate is usually

high and the stochastic fluctuations has no significant

effect on the void evolution [4,19].
4. Discussions

It is interesting to note, from our present results, that

the void coarsening effect is significant only if the initial

void density is sufficiently high. If the initial void density

is close to that at the largest dose in Fig. 3, for example,

the effect would not have been significant. Indeed, it is

clear that stochastic fluctuations are generally unfavor-

able to the nucleation of a void [4], because the probabil-

ity of stochastic shrinkage is substantially higher for the

smaller voids. On the other hand, the shrinkage probabil-

ity is also strongly affected by the average net vacancy

flux DvCv � DiCi [4]. Thus, referring to Fig. 3, the num-

ber of surviving voids is several times higher at

qd = 1014 m�2 than at qd = 1013 m�2. Consequently, if

the dislocation density is changed slowly from 1014 m�2

to a steady-state value close to 1013 m�2, a significant

fraction of the voids nucleated at the higher dislocation

density would have shrunk away. This means that for

the stochastic void shrinkage to occur, void nucleation

must have been completed. Of course, one must be care-

ful that the segregation of the impurities to the void sur-

faces, causing a reduction of the net vacancy flux received

by the voids, may also produce similar effects.

According to the foregoing, a high void-nucleation

rate is necessary to bring the ensemble of voids into an
inherently unstable state under the action of stochastic

fluctuations. This explains why void shrinkage is not al-

ways observed, even under very similar irradiation con-

ditions [15,17]. Nevertheless, the present calculations

clearly demonstrate that, under the action of stochastic

fluctuations, significant void coarsening can occur, for

the values of void concentration and void swelling rate,

which are typical for molybdenum at the corresponding

temperatures.

For temperatures at which vacancy emission from

voids is negligible, void coarsening is most often ob-

served experimentally at the initial stage of void-lattice

formation. Initially voids are randomly distributed in

space. Void coarsening takes place during the ordering

process at later stages, resulting in the dissolution of ran-

domly distributed voids, and the nucleation and growth

of voids forming a regular lattice [16,23–25]. For the

present discussion, it is important to notice the strong

correlation between the rate of void nucleation and

void-lattice formation [24–27]. Indeed, void-lattice for-

mation is a prominent feature of molybdenum and tung-

sten, both of which have extremely high void nucleation

rates. In other metals, the void lattice formation is ob-

served only occasionally, when conditions for the nucle-

ation of a high void density is created by different means

like, for example, by the introduction of impurities, or a

preliminary low temperature irradiation.
5. Summary

In this paper, the conventional master equation has

been reformulated to include cascade-induced stochastic

effects. The modified master equation is applied to inves-

tigate the evolution of a void ensemble in the regime of

low void growth rate. In agreement with the analytical

results derived earlier from a Fokker–Planck equation

approach [4,19], the cascade-induced fluctuations are

found to play a dominant role in the evolution of a void

ensemble, causing the disappearance by shrinkage of the

majority of voids, particularly the smaller ones, and the

simultaneous growth of the larger ones. This coarsening

of the void ensemble is not caused by vacancy emission

from the voids, but rather, by the stochastic fluctuations

in the point-defect fluxes received by the voids. While

this kind of void shrinkage is not expected under the

standard theory, it follows from kinetic approaches

based on the Fokker–Planck or the master equations,

which include the effect of stochastic fluctuations due

to the random initiation of cascades.
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